Tutorial II
Using the adaptive mesh refinement & spherical shell geometry

Juliane Dannberg
Overview

• At the end of this tutorial, you should be able to:
 – Set up a model with Earth-like geometry and temperature in Aspect
 – Set up a model with adaptive mesh in Aspect
 – Decide which mesh refinement strategy to use
 – Know a bit more about how the mesh influences the flow field 😊
Setup: Convection in a Shell

• Geometry: Quarter of a spherical shell
• Constant initial temperature with a perturbation to start the upwelling

10/28/14
Tasks

• We will split the class into multiple groups identified by the mesh refinement (number of global refinements)
• You will need to:
 1. Modify the spherical_shell.prm file to use your assigned refinement number/strategy
 2. Run the simulation
 3. Visualize the results and make sure they are realistic
 4. Check which features of the flow field are resolved
 5. Note: to halt a simulation, press “Control-C”
Using ASPECT

• We will begin by editing the input file

1. Change to the appropriate directory
 cd ~/ASPECT_TUTORIAL/models

2. Open the parameter file for editing
 gedit spherical_shell.prm
Material model

set Adiabatic surface temperature = 1600

subsection Material model
 set Model name = simple
subsection Simple model
 set Thermal expansion coefficient = 2e-5
 set Viscosity = 3e21
 set Thermal viscosity exponent = 3
 set Reference temperature = 1600
end
end

These should be the same

Temperature-dependent viscosity
subsection Geometry model
 set Model name = spherical shell

subsection Spherical shell
 set Inner radius = 3481000
 set Outer radius = 6336000
 set Opening angle = 90
end
end

subsection Gravity model
 set Model name = radial earth-like
end

The gravity model has to be changed together with the geometry
set Adiabatic surface temperature = 1600

subsection Initial conditions
 set Model name = adiabatic

 subsection Adiabatic
 set Amplitude = 10
 set Radius = 500000
 end
end

This is the temperature used as initial condition
Adiabatic initial conditions

- Calculated using depth-dependent ρ, α, c_p
Boundary conditions

subsection Model settings
set Zero velocity boundary indicators = 0
set Tangential velocity boundary indicators = 1, 2, 3
set Prescribed velocity boundary indicators =
set Fixed temperature boundary indicators = 0, 1

set Include shear heating = false
set Include adiabatic heating = false
end
subsection Model settings
subsection Model settings
 set Zero velocity boundary indicators = inner
 set Tangential velocity boundary indicators = outer, left, right
 set Prescribed velocity boundary indicators =
 set Fixed temperature boundary indicators = inner, outer
 set Include shear heating = false
 set Include adiabatic heating = false
end
subsection Mesh refinement
set Initial global refinement = 5
set Initial adaptive refinement = 0
set Strategy = temperature
set Time steps between mesh refinement = 0
set Coarsening fraction = 0.05
set Refinement fraction = 0.3
end
subsection Mesh refinement

- set Initial global refinement = 5
- set Initial adaptive refinement = 0
- set Strategy = temperature
- set Time steps between mesh refinement = 0
- set Coarsening fraction = 0.05
- set Refinement fraction = 0.3

end

Running the model
aspect spherical_shell.prm

Or in parallel
mpirun –np 2 aspect spherical_shell.prm

This is what we want to change:
- Group 1: 3
- Group 2: 4
- Group 3: 5
- Group 4: 6
Numerical Challenges

Different scales

- High viscosity contrasts
- Advection of steep thermal/compositional gradients
- Complex material properties
- Problems with large number of DOFs

GeoMod2014
Mesh adaptation

• Example: Composition as refinement strategy

Compositional field

Mesh cells, colors indicate the estimated error

GeoMod2014
Mesh adaptation

• Stokes solver for problems with complex interfaces and high viscosity ratios

Circular inclusion test, viscosity contrast 10^3
Mesh adaptation

Analytical Solution for Pressure:

Aspect’s solution for Pressure:

(Schmid, Podladchikov, 2003)
Mesh adaptation

Choose **Strategies**: temperature, density, velocity, composition, thermal energy density

Calculate error estimate c_K (based on 2nd derivatives & cell diameter)

$$E = \sum_{K \in T} c_K$$

Total error estimate E

Normalize refinement criteria?

Scale errors for each criterium?

Add errors/take maximum?

Choose **refinement + coarsening fraction α**

Look for the smallest subset M

$$aE = \sum_{K \in M} c_K$$

(sum up c_K in the cells with the largest/smallest error until you reach fraction α of the error)

Mark those cells for refinement/coarsening

GeoMod2014
Mesh refinement options

- Strategies: (nonadiabatic) temperature / pressure, composition, density, velocity, viscosity, thermal energy density...
- Refinement criteria scaling factors
- min/max refinement level function
 - Phase transitions / jump in material properties
- Additional refinement times
 - Onset of new processes (convection? melting? plate velocities?)
Inspecting the results

1. With Paraview
 paraview
2. How does the flow field change with varying the resolution?
3. How does the runtime change with the adaptive refinement compared to global refinement?
4. What refinement / coarsening fraction is sufficient?
Results

Time snapshots of models with different resolution

Group 1: 3

Group 2: 4

Group 3: 5

Group 4: 6
subsection Mesh refinement

set Initial global refinement = 5
set Initial adaptive refinement = 0
set Strategy = temperature
set Time steps between mesh refinement = 0
set Coarsening fraction = 0.05
set Refinement fraction = 0.3
end

This is what we want to change:

- Group 1: 4 + 0
- Group 2: 5 + 0
- Group 3: 6 + 0

Set to a value > 0 to enable adaptive refinement
Results

10/28/14

global

3 | 4

4 | 5

5 | 6

6 | 7

adaptive

GeoMod2014
Results

Global 6

Adaptive 6
Results

Run time in seconds for different refinement levels:
- Refinement 3
- Refinement 4
- Refinement 5
- Refinement 6

Comparison of Global and Adaptive runtimes:
- Global
- Adaptive

Date: 10/28/14

GeoMod 2014
subsection Mesh refinement
 set Initial global refinement = 4
 set Initial adaptive refinement = 2
 set Strategy = temperature
 set Time steps between mesh refinement = 5
 set Refinement fraction = 0.3
 set Coarsening fraction = 0.05
end

This is what we want to change:
• Group 1: 0.6 + 0.01
• Group 2: 0.1 + 0.1
Results