Crustal Deformation Modeling Tutorial
Introduction to CUBIT

Brad Aagaard
Rowena Lohman
Charles Williams
Matthew Knepley

CIG
COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

June 20, 2011
CUBIT, cubit.sandia.gov
Finite-element mesh generator

- Developed by Sandia National Laboratory
 - GUI interface reduces learning curve
 - Inexpensive, $300 acquisition fee for 5 years of updates/support
 - Scripting via Python and journal files
 - Trial version available from www.csimsoft.com

- Geometry engine
 - Construct domain geometry using simple, yet powerful tools
 - Spline surfaces and curves
 - Some support for mesh surfaces (e.g., triangular facets)

- 2-D and 3-D structured and unstructured meshes
 - Triangular cells
 - Quadrilateral cells
 - Tetrahedral cells
 - Hexahedral cells
The Basic CUBIT Process

1. Import/Build Solid Model
2. Simplify Geometry
3. Decompose Geometry
4. Imprint & Merge
5. Set Schemes & Intervals
6. Mesh
7. Check Quality
8. Apply B.C.s
9. Export Mesh
Generating a Mesh
General workflow for using CUBIT with PyLith

1. Create the geometry
 - Build geometry from bottom-up (points-curves-surfaces-volumes)
 - Import geometry from other geologic models
2. Set the discretization size meshing scheme
3. Mesh the geometry
4. Specify the boundary conditions and materials
5. Export the mesh
Using CUBIT

- **GUI**
 - Interactive mesh construction
 - Constructing journal files and Python scripts

- **Command line**
 - Can be run in batch mode and with or without graphics
 - Useful for generating large and/or complex meshes

- **Journal files and APREPRO**
 - Enables scripting with variables and units
 - Limited to CUBIT commands and a few simple functions

- **Python scripts**
 - Generate CUBIT commands
 - Full capabilities of Python programming language
 - Restricted to Python interpreter distributed with CUBIT
Entity Types in CUBIT

Geometry Entities in CUBIT

- Vertex
- Curve
- Surface
- Volume
- Body

Mesh Entities, which approximate geometry entities of same dimension

- Node
- Edge
- Face
- Hex
- Hex

CUBIT Meshes Vertices First, Then Curves, Then Surfaces, Then Volumes (Advancing Front Paradigm)
The Command Panel
Operation Mode Buttons

Press an Icon to enter a new mode

- Geometry: Create, modify, cleanup...
- Mesh: Intervals, schemes, smoothing...
- Properties: Nodesets, sidesets, blocks
- Analysis Setup: Export mesh
- Post Processing: Customizable shortcut
Operation Mode Buttons

Each Button press takes you to a lower level
Typical Dialog Layout

- **Drop Down Menu**
 - Select the type of operation (sub-action).

- **ID Input Field**
 - You can type IDs here, or fill the box by picking

- **Command Options Input**

- **Execute Button**
 - Click button or hit alt-a to execute the command.
Zooming

To zoom in and out, move the mouse into the graphics window, hold the right mouse button down, and move the mouse pointer vertically.
Rotate

To rotate the model about an axis normal to the screen, move the mouse near the edge of the graphics window, hold the middle mouse button down, and move the mouse pointer along the edge of the window.
Panning

To pan, move the mouse into the graphics window, hold the left mouse button down, and move the mouse pointer horizontally or vertically.
Display Tool Bar

- Display modes
- Zoom in, out, and fit
- Toggle Scale
- Check point
- Save/undo
- Redisplay
- Perspective on/off
- Choose rubber band select mode
Entity Selection Filter

- Toolbar buttons toggle entity types that will be included in pre-selection
- Default
 - Volume
 - Surface
 - Curve
 - Vertex
- Active ID input field “hijacks” pre-selection so that only the expected entity type is selectable
Using the Tree View

List Type

List View

Expand tree to show selected entity

Current Selection
Entering Commands

- All commands can be entered in the command window
- Partial words OK
- Can use general ID ranges
 - draw curve 1 to 5 except 4
 - draw curve in volume 2
Basic Aprepro Syntax

- Aprepro expressions are wrapped in curly braces
- Aprepro evaluated first, results inserted into command:

 Brick X {10}
 And
 Brick X {5*2}
 Are Equivalent To
 Brick X 10
Types of Functions

- **Math Functions**
 - `sin(num)`, `cos(num)`, `asin(num)`, etc...
 - `sqrt(num)`, `exp(num)`, `log(num)`, `ln(num)`, etc...

- **String Manipulation Functions**
 - `Quote(string)`, `toupper(string)`, `tolower(string)`

- **Utility Functions**
 - `Print(string)`, `PrintError(string)`
 - `FileExists(string)`, `HasFeature(string)`
Example 7 – Row Of Bricks

Set parameters
{num_bricks=5}
{brick_size=1}
#
Create the bricks
{Loop(num_bricks)}
 Brick Width {brick_size}
{EndLoop}
#
Scoot them into a line
{cur_brick = 1}
{Loop(num_bricks)}
 Volume {cur_brick} move {(cur_brick-1)*brick_size}
 # {cur_brick++}
{EndLoop}
Create Button

- Geometry Primitives are accessed with the Create button
- Seven primitive types are currently available
- For command line syntax:
 - CUBIT> help create
Subtract

• Removes regions that overlap

Before

CUBIT> subtract body 2 from 1

After
Webcutting

- Webcutting slices 1 Body into 2 Bodies
- Many methods to determine where to make the slice
 - Plane
 - Cylinder
 - Extended Surface
 - Intersection with “Tool” Body

For command line syntax:
CUBIT> help webcut
Imprinting

- Modifies a Body based on what it touches
- Splits existing Curves and Surfaces at points of contact
- Imprinting is a necessary step to allow adjacent Bodies to share common boundaries
Imprinting

Body 1 and 2

Body 1 before imprinting

Body 1 after imprinting
Surface Meshing Schemes

CUBIT Provides a number of different surface mesh schemes. Choosing the best scheme depends on the shape and number of curves in the surface. Your choice also depends on how you plan to mesh the volume.

- **Surface Schemes**
 - Map
 - SubMap
 - Pave
 - Triangle Primitive
 - Circle Primitive
 - Pentagon Primitive
 - Morph/Mirror
 - TriMesh
Volume Meshing Schemes

CUBIT Provides a number of different volume mesh schemes. Similar to Surface Scheme Selection, Volume Scheme Selection is based on the shape of the geometry.

Example Volume Meshing Schemes

- Map
- Tetmesh
- THex
- Submap
- Sphere
- Polyhedron
- Sweep

Run mesh demo
Materials and Boundary Conditions

- **Blocks** = materials

 block 1 volume foot_inner
 block 1 volume 1 to 8
 block 1 name "foot_walls"

- **Nodesets** = groups of nodes for boundary conditions and faults

 group "fault" add node in fault_inner
 nodeset 10 group fault
 nodeset 10 name "fault"
Exporting to PyLith

- Export mesh

  ```
  export mesh "out.exo" dimension 3 overwrite
  ```

- In `pylithapp.cfg`

  ```
  [pylithapp.mesh_generator]
  reader = pylith.meshio.MeshIOCubit
  reader.filename = out.exo
  ```
CUBIT Tips

- Can select multiple entities at once in many ways
 - `draw volume all with x_coord > 0.0`
 - `curve all in volume 1 to 3 5 visibility off`

- Use tree view and info panel (or Python) to find names/numbers/geometry information

- Make sure to
 - “reset” between tests/runs
 - Merge/Imprint all entities before meshing

- Journal files and APREPRO
 - Use journal files to save commands
 - Use APREPRO for units and variables
 - Every command is echoed in the command panel (copy/paste into journal files)
CUBIT Resources

- CUBIT website, cubit.sandia.gov
 - User manual
 - Tutorials (geometry with cones, prisms, spheres, etc)
 - Support via email
- CIG website
 - Slides from past CUBIT tutorials at Crustal Deformation Modeling workshops
 www.geodynamics.org
 → Community
 → Working Groups
 → Short-Term Crustal Dynamics
 → Workshops
- Example files
 - Some support for mesh surfaces (e.g., triangular facets)
- GeoCUBIT developed by Emanuele Casarotti
 - Python scripting of CUBIT for SPECFEM3D
 - Available from CIG code repository